|  Help  |  About  |  Contact Us

Publication : Regulation of the multifunctional Ca2+/calmodulin-dependent protein kinase II by the PP2C phosphatase PPM1F in fibroblasts.

First Author  Harvey BP Year  2004
Journal  J Biol Chem Volume  279
Issue  23 Pages  24889-98
PubMed ID  15140879 Mgi Jnum  J:182401
Mgi Id  MGI:5315357 Doi  10.1074/jbc.M400656200
Citation  Harvey BP, et al. (2004) Regulation of the multifunctional Ca2+/calmodulin-dependent protein kinase II by the PP2C phosphatase PPM1F in fibroblasts. J Biol Chem 279(23):24889-98
abstractText  The regulation of the multifunctional calcium/calmodulin dependent protein kinase II (CaMKII) by serine/threonine protein phosphatases has been extensively studied in neuronal cells; however, this regulation has not been investigated previously in fibroblasts. We cloned a cDNA from SV40-transformed human fibroblasts that shares 80% homology to a rat calcium/calmodulin-dependent protein kinase phosphatase that encodes a PPM1F protein. By using extracts from transfected cells, PPM1F, but not a mutant (R326A) in the conserved catalytic domain, was found to dephosphorylate in vitro a peptide corresponding to the auto-inhibitory region of CaMKII. Further analyses demonstrated that PPM1F specifically dephosphorylates the phospho-Thr-286 in autophosphorylated CaMKII substrate and thus deactivates the CaMKII in vitro. Coimmunoprecipitation of CaMKII with PPM1F indicates that the two proteins can interact intracellularly. Binding of PPM1F to CaMKII involves multiple regions and is not dependent on intact phosphatase activity. Furthermore, overexpression of PPM1F in fibroblasts caused a reduction in the CaMKII-specific phosphorylation of the known substrate vimentin(Ser-82) following induction of the endogenous CaM kinase. These results identify PPM1F as a CaM kinase phosphatase within fibroblasts, although it may have additional functions intracellularly since it has been presented elsewhere as POPX2 and hFEM-2. We conclude that PPM1F, possibly together with the other previously described protein phosphatases PP1 and PP2A, can regulate the activity of CaMKII. Moreover, because PPM1F dephosphorylates the critical autophosphorylation site of CaMKII, we propose that this phosphatase plays a key role in the regulation of the kinase intracellularly.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

2 Bio Entities

Trail: Publication

0 Expression