|  Help  |  About  |  Contact Us

Publication : TIF1beta regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner.

First Author  Seki Y Year  2010
Journal  Proc Natl Acad Sci U S A Volume  107
Issue  24 Pages  10926-31
PubMed ID  20508149 Mgi Jnum  J:161286
Mgi Id  MGI:4457953 Doi  10.1073/pnas.0907601107
Citation  Seki Y, et al. (2010) TIF1beta regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner. Proc Natl Acad Sci U S A 107(24):10926-31
abstractText  Transcription networks composed of various transcriptional factors specifically expressed in undifferentiated embryonic stem (ES) cells have been implicated in the regulation of pluripotency in ES cells. However, the molecular mechanisms responsible for self-renewal, maintenance of pluripotency, and lineage specification during differentiation of ES cells are still unclear. The results of this study demonstrate that a phosphorylation-dependent chromatin relaxation factor, transcriptional intermediary factor-1beta (TIF1beta), is a unique regulator of the pluripotency of ES cells and regulates Oct3/4-dependent transcription in a phosphorylation-dependent manner. TIF1beta is specifically phosphorylated in pluripotent mouse ES cells at the C-terminal serine 824, which has been previously shown to induce chromatin relaxation. Phosphorylated TIF1beta is partially colocalized at the activated chromatin markers, and forms a complex with the pluripotency-specific transcription factor Oct3/4 and subunits of the switching defective/sucrose nonfermenting, ATP-dependent chromatin remodeling complex, Smarcad1, Brg-1, and BAF155, all of which are components of an ES-specific chromatin remodeling complex, esBAF. Phosphorylated TIF1beta specifically induces ES cell-specific genes and enables prolonged maintenance of an undifferentiated state in mouse ES cells. Moreover, TIF1beta regulates the reprogramming process of somatic cells in a phosphorylation-dependent manner. Our results suggest that TIF1beta provides a phosphorylation-dependent, bidirectional platform for specific transcriptional factors and chromatin remodeling enzymes that regulate the cell differentiation process and the pluripotency of stem cells.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression