First Author | Garg V | Year | 2003 |
Journal | Nature | Volume | 424 |
Issue | 6947 | Pages | 443-7 |
PubMed ID | 12845333 | Mgi Jnum | J:113930 |
Mgi Id | MGI:3687882 | Doi | 10.1038/nature01827 |
Citation | Garg V, et al. (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424(6947):443-7 |
abstractText | Congenital heart defects (CHDs) are the most common developmental anomaly and are the leading non-infectious cause of mortality in newborns. Only one causative gene, NKX2-5, has been identified through genetic linkage analysis of pedigrees with non-syndromic CHDs. Here, we show that isolated cardiac septal defects in a large pedigree were linked to chromosome 8p22-23. A heterozygous G296S missense mutation of GATA4, a transcription factor essential for heart formation, was found in all available affected family members but not in any control individuals. This mutation resulted in diminished DNA-binding affinity and transcriptional activity of Gata4. Furthermore, the Gata4 mutation abrogated a physical interaction between Gata4 and TBX5, a T-box protein responsible for a subset of syndromic cardiac septal defects. Conversely, interaction of Gata4 and TBX5 was disrupted by specific human TBX5 missense mutations that cause similar cardiac septal defects. In a second family, we identified a frame-shift mutation of GATA4 (E359del) that was transcriptionally inactive and segregated with cardiac septal defects. These results implicate GATA4 as a genetic cause of human cardiac septal defects, perhaps through its interaction with TBX5. |