First Author | Hägele S | Year | 2009 |
Journal | Biochem J | Volume | 417 |
Issue | 1 | Pages | 235-46 |
PubMed ID | 18752464 | Mgi Jnum | J:204958 |
Mgi Id | MGI:5543770 | Doi | 10.1042/BJ20081353 |
Citation | Hagele S, et al. (2009) Cytoplasmic polyadenylation-element-binding protein (CPEB)1 and 2 bind to the HIF-1alpha mRNA 3'-UTR and modulate HIF-1alpha protein expression. Biochem J 417(1):235-46 |
abstractText | The heterodimeric HIF (hypoxia-inducible factor)-1 is a transcriptional master regulator of several genes involved in mammalian oxygen homoeostasis. Besides the well described regulation of the HIF-1alpha subunit via hydroxylation-mediated protein stability in hypoxia, there are several indications of an additional translational control of the HIF-1alpha mRNA, especially after growth factor stimulation. We identified an interaction of CPEB (cytoplasmic polyadenylation-element-binding protein) 1 and CPEB2 with the 3'-UTR (untranslated region) of HIF-1alpha mRNA. Overexpression of CPEB1 and CPEB2 affected HIF-1alpha protein levels mediated by the 3'-UTR of HIF-1alpha mRNA. Stimulation of neuroblastoma SK-N-MC cells with insulin and thus activation of endogenous CPEBs increased the expression of a luciferase reporter gene fused to the 3'-UTR of HIF-1alpha as well as endogenous HIF-1alpha protein levels. This could be abrogated by treating the cells with CPEB1 or CPEB2 siRNAs (short interfering RNAs). Injection of HIF-1alpha cRNA into Xenopus oocytes verified the elongation of the poly(A)+ (polyadenylated) tail by cytoplasmic polyadenylation. Thus CPEB1 and CPEB2 are involved in the regulation of HIF-1alpha following insulin stimulation. |