|  Help  |  About  |  Contact Us

Publication : VDAC1, as a downstream molecule of MLKL, participates in OGD/R-induced necroptosis by inducing mitochondrial damage.

First Author  Wan H Year  2024
Journal  Heliyon Volume  10
Issue  1 Pages  e23426
PubMed ID  38173512 Mgi Jnum  J:359824
Mgi Id  MGI:7790575 Doi  10.1016/j.heliyon.2023.e23426
Citation  Wan H, et al. (2024) VDAC1, as a downstream molecule of MLKL, participates in OGD/R-induced necroptosis by inducing mitochondrial damage. Heliyon 10(1):e23426
abstractText  Ischemia-reperfusion (I/R) injury constitutes a significant risk factor for a range of diseases, including ischemic stroke, myocardial infarction, and trauma. Following the restoration of blood flow post-tissue ischemia, oxidative stress can lead to various forms of cell death, including necrosis, apoptosis, autophagy, and necroptosis. Recent evidence has highlighted the crucial role of mitochondrial dysfunction in I/R injury. Nevertheless, there remains much to be explored regarding the molecular signaling network governing cell death under conditions of oxidative stress. Voltage-dependent anion channel 1 (VDAC1), a major component in the outer mitochondrial membrane, is closely involved in the regulation of cell death. In a cellular model of oxygen-glucose deprivation and reoxygenation (OGD/R), which effectively simulates I/R injury in vitro, our study reveals that OGD/R induces VDAC1 oligomerization, consequently exacerbating cell death. Furthermore, we have revealed the translocation of mixed lineage kinase domain-like protein (MLKL) to the mitochondria, where it interacts with VDAC1 following OGD/R injury, leading to an increased mitochondrial membrane permeability. Notably, the inhibition of MLKL by necrosulfonamide hinders the binding of MLKL to VDAC1, primarily by affecting the membrane translocation of MLKL, and reduces OGD/R-induced VDAC1 oligomerization. Collectively, our findings provide preliminary evidence of the functional association between MLKL and VDAC1 in the regulation of necroptosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression