|  Help  |  About  |  Contact Us

Publication : Bi-allelic HPDL Variants Cause a Neurodegenerative Disease Ranging from Neonatal Encephalopathy to Adolescent-Onset Spastic Paraplegia.

First Author  Husain RA Year  2020
Journal  Am J Hum Genet Volume  107
Issue  2 Pages  364-373
PubMed ID  32707086 Mgi Jnum  J:306602
Mgi Id  MGI:6716976 Doi  10.1016/j.ajhg.2020.06.015
Citation  Husain RA, et al. (2020) Bi-allelic HPDL Variants Cause a Neurodegenerative Disease Ranging from Neonatal Encephalopathy to Adolescent-Onset Spastic Paraplegia. Am J Hum Genet 107(2):364-373
abstractText  We report bi-allelic pathogenic HPDL variants as a cause of a progressive, pediatric-onset spastic movement disorder with variable clinical presentation. The single-exon gene HPDL encodes a protein of unknown function with sequence similarity to 4-hydroxyphenylpyruvate dioxygenase. Exome sequencing studies in 13 families revealed bi-allelic HPDL variants in each of the 17 individuals affected with this clinically heterogeneous autosomal-recessive neurological disorder. HPDL levels were significantly reduced in fibroblast cell lines derived from more severely affected individuals, indicating the identified HPDL variants resulted in the loss of HPDL protein. Clinical presentation ranged from severe, neonatal-onset neurodevelopmental delay with neuroimaging findings resembling mitochondrial encephalopathy to milder manifestation of adolescent-onset, isolated hereditary spastic paraplegia. All affected individuals developed spasticity predominantly of the lower limbs over the course of the disease. We demonstrated through bioinformatic and cellular studies that HPDL has a mitochondrial localization signal and consequently localizes to mitochondria suggesting a putative role in mitochondrial metabolism. Taken together, these genetic, bioinformatic, and functional studies demonstrate HPDL is a mitochondrial protein, the loss of which causes a clinically variable form of pediatric-onset spastic movement disorder.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression