|  Help  |  About  |  Contact Us

Publication : Modelling a ciliopathy: Ahi1 knockdown in model systems reveals an essential role in brain, retinal, and renal development.

First Author  Simms RJ Year  2012
Journal  Cell Mol Life Sci Volume  69
Issue  6 Pages  993-1009
PubMed ID  21959375 Mgi Jnum  J:180533
Mgi Id  MGI:5306539 Doi  10.1007/s00018-011-0826-z
Citation  Simms RJ, et al. (2012) Modelling a ciliopathy: Ahi1 knockdown in model systems reveals an essential role in brain, retinal, and renal development. Cell Mol Life Sci 69(6):993-1009
abstractText  Joubert syndrome and related diseases (JSRD) are cerebello-oculo-renal syndromes with phenotypes including cerebellar hypoplasia, retinal dystrophy, and nephronophthisis (a cystic kidney disease). Mutations in AHI1 are the most common genetic cause of JSRD, with developmental hindbrain anomalies and retinal degeneration being prominent features. We demonstrate that Ahi1, a WD40 domain-containing protein, is highly conserved throughout evolution and its expression associates with ciliated organisms. In zebrafish ahi1 morphants, the phenotypic spectrum of JSRD is modeled, with embryos showing brain, eye, and ear abnormalities, together with renal cysts and cloacal dilatation. Following ahi1 knockdown in zebrafish, we demonstrate loss of cilia at Kupffer's vesicle and subsequently defects in cardiac left-right asymmetry. Finally, using siRNA in renal epithelial cells we demonstrate a role for Ahi1 in both ciliogenesis and cell-cell junction formation. These data support a role for Ahi1 in epithelial cell organization and ciliary formation and explain the ciliopathy phenotype of AHI1 mutations in man.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression