First Author | Kolli S | Year | 2004 |
Journal | J Biol Chem | Volume | 279 |
Issue | 28 | Pages | 29374-85 |
PubMed ID | 15133037 | Mgi Jnum | J:196112 |
Mgi Id | MGI:5486560 | Doi | 10.1074/jbc.M313955200 |
Citation | Kolli S, et al. (2004) The major vault protein is a novel substrate for the tyrosine phosphatase SHP-2 and scaffold protein in epidermal growth factor signaling. J Biol Chem 279(28):29374-85 |
abstractText | The catalytic activity of the Src homology 2 (SH2) domain-containing tyrosine phosphatase, SHP-2, is required for virtually all of its signaling effects. Elucidating the molecular mechanisms of SHP-2 signaling, therefore, rests upon the identification of its target substrates. In this report, we have used SHP-2 substrate-trapping mutants to identify the major vault protein (MVP) as a putative SHP-2 substrate. MVP is the predominant component of vaults that are cytoplasmic ribonucleoprotein complexes of unknown function. We show that MVP is dephosphorylated by SHP-2 in vitro and it forms an enzyme-substrate complex with SHP-2 in vivo. In response to epidermal growth factor (EGF), SHP-2 associates via its SH2 domains with tyrosyl-phosphorylated MVP. MVP also interacts with the activated form of the extracellular-regulated kinases (Erks) in response to EGF and a constitutive complex between tyrosyl-phosphorylated MVP, SHP-2, and the Erks was detected in MCF-7 breast cancer cells. Using MVP-deficient fibroblasts, we demonstrate that MVP cooperates with Ras for optimal EGF-induced Elk-1 activation and is required for cell survival. We propose that MVP functions as a novel scaffold protein for both SHP-2 and Erk. The regulation of MVP tyrosyl phosphorylation by SHP-2 may play an important role in cell survival signaling. |