|  Help  |  About  |  Contact Us

Publication : Conservation of IL-6 trans-signaling mechanisms controlling L-selectin adhesion by fever-range thermal stress.

First Author  Appenheimer MM Year  2007
Journal  Eur J Immunol Volume  37
Issue  10 Pages  2856-67
PubMed ID  17823890 Mgi Jnum  J:125266
Mgi Id  MGI:3758108 Doi  10.1002/eji.200636421
Citation  Appenheimer MM, et al. (2007) Conservation of IL-6 trans-signaling mechanisms controlling L-selectin adhesion by fever-range thermal stress. Eur J Immunol 37(10):2856-67
abstractText  Fever is associated with improved survival during infection in endothermic and ectothermic species although the protective mechanisms are largely undefined. Previous studies indicate that fever-range thermal stress increases the binding activity of the L-selectin homing receptor in human or mouse leukocytes, thereby promoting trafficking to lymphoid tissues across high endothelial venules (HEV). Here, we examined the evolutionary conservation of thermal regulation of L-selectin-like adhesion. Leukocytes from animals representing four taxa of vertebrates (mammals, avians, amphibians, teleosts) were shown to mediate L-selectin-like adhesion under shear to MECA-79-reactive ligands on mouse HEV in cross-species in vitro adherence assays. L-selectin-like binding activity was markedly increased by fever-range thermal stress in leukocytes of all species examined. Comparable increases in L-selectin-like adhesion were induced by thermal stress, IL-6, or the IL-6/soluble IL-6 receptor fusion protein, hyper-IL-6. Analysis of the molecular basis of thermal regulation of L-selectin-like adhesion identified a common IL-6 trans-signaling mechanism in endotherms and ectotherms that resulted in activation of JAK/STAT signaling and was inhibited by IL-6 neutralizing antibodies or recombinant soluble gp130. Conservation of IL-6-dependent mechanisms controlling L-selectin adhesion over hundreds of millions of years of vertebrate evolution strongly suggests that this is a beneficial focal point regulating immune surveillance during febrile inflammatory responses.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression