|  Help  |  About  |  Contact Us

Publication : Catechol estrogen metabolites and conjugates in mammary tumors and hyperplastic tissue from estrogen receptor-alpha knock-out (ERKO)/Wnt-1 mice: implications for initiation of mammary tumors.

First Author  Devanesan P Year  2001
Journal  Carcinogenesis Volume  22
Issue  9 Pages  1573-6
PubMed ID  11532882 Mgi Jnum  J:71730
Mgi Id  MGI:2150613 Doi  10.1093/carcin/22.9.1573
Citation  Devanesan P, et al. (2001) Catechol estrogen metabolites and conjugates in mammary tumors and hyperplastic tissue from estrogen receptor-alpha knock-out (ERKO)/Wnt-1 mice: implications for initiation of mammary tumors. Carcinogenesis 22(9):1573-6
abstractText  A novel model of breast cancer was established by crossing mice carrying the Wnt-1 transgene (100% of adult females develop spontaneous mammary tumors) with the ERKO mouse line, in which mammary tumors develop despite a lack of functional estrogen receptor-alpha. To begin investigating whether metabolite-mediated genotoxicity of estrogens may play an important role in the initiation of mammary tumors, the pattern of estrogen metabolites and conjugates was examined in ERKO/Wnt-1 mice. Extracts of hyperplastic mammary tissue and mammary tumors were analyzed by HPLC with identification and quantification of compounds by multichannel electrochemical detection. Picomole amounts of the 4-catechol estrogens (CE) were detected, but their methoxy conjugates, as well as the 2-CE and their methoxy conjugates, were not. 4-CE conjugates with glutathione or its hydrolytic products (cysteine and N-acetylcysteine) were detected in picomole amounts in both tumors and hyperplastic mammary tissue, demonstrating the formation of CE-3,4-quinones. These preliminary findings show that the estrogen metabolite profile in the mammary tissue is unbalanced, in that the normally minor 4-CE metabolites were detected in the mammary tissue and not the normally predominant 2-CE. These results are consistent with the hypothesis that the mammary tumor development is primarily initiated by metabolism of estrogens to 4-CE and, then, to CE-3,4-quinones, which may react with DNA to induce oncogenic mutations.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression