|  Help  |  About  |  Contact Us

Publication : Evidence for linkage of the apolipoprotein A-II locus to plasma apolipoprotein A-II and free fatty acid levels in mice and humans.

First Author  Warden CH Year  1993
Journal  Proc Natl Acad Sci U S A Volume  90
Issue  22 Pages  10886-90
PubMed ID  8248186 Mgi Jnum  J:16123
Mgi Id  MGI:64213 Doi  10.1073/pnas.90.22.10886
Citation  Warden CH, et al. (1993) Evidence for linkage of the apolipoprotein A-II locus to plasma apolipoprotein A-II and free fatty acid levels in mice and humans. Proc Natl Acad Sci U S A 90(22):10886-90
abstractText  Although it has been hypothesized that the synteny between mouse and human genes provides an approach to the localization of genes that determine quantitative traits in humans, this has yet to be demonstrated. We tested this approach with two quantitative traits, plasma apolipoprotein A-II (apoAII) and free fatty acid (FFA) levels. ApoAII is the second most abundant protein of high density lipoprotein particles, but its function remains largely unknown. We now show that, in a backcross between strains Mus spretus and C57BL/6J, apoAII levels correlate with plasma FFA concentrations on both chow (P < 0.0001) and high-fat (P < 0.0003) diets and that apoAII levels are linked to the apoAII gene (P < 0.0002). To test whether variations of the apoAII gene influence plasma lipid metabolism in humans, we studied 306 individuals in 25 families enriched for coronary artery disease. The segregation of the apoAII gene was followed by using an informative simple sequence repeat in the second intron of the gene and two nearby genetic markers. Robust sib-pair linkage analysis was performed on members of these families using the SAGE linkage programs. The results suggest linkage between the human apoAII gene and a gene controlling plasma apoAII levels (P = 0.03). Plasma apoAII levels were also significantly correlated with plasma FFA levels (P = 0.007). Moreover, the apoAII gene exhibited linkage with a gene controlling FFA levels (P = 0.003). Evidence for nonrandom segregation was seen with markers as far as 6-12 centimorgans from the apoAII structural locus. These data provide evidence, in two species, that the apoAII gene is linked to a gene that controls plasma apoAII levels and that apoAII influences, by an unknown mechanism, plasma FFA levels. The results illustrate the utility of animal studies for analysis of complex traits.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression