First Author | Godambe SA | Year | 1995 |
Journal | Mol Cell Biol | Volume | 15 |
Issue | 1 | Pages | 112-9 |
PubMed ID | 7799917 | Mgi Jnum | J:22030 |
Mgi Id | MGI:69924 | Doi | 10.1128/mcb.15.1.112 |
Citation | Godambe SA, et al. (1995) A novel cis-acting element required for lipopolysaccharide-induced transcription of the murine interleukin-1 beta gene. Mol Cell Biol 15(1):112-9 |
abstractText | Regulatory elements important for transcription of the murine interleukin-1 beta (IL-1 beta) gene lie within a DNase I-hypersensitive region located > 2,000 bp upstream from the transcription start site. We have identified within this region a novel positive regulatory element that is required for activation of an IL-1 beta promoter-chloramphenicol acetyltransferase (CAT) fusion gene in the murine macrophage line RAW264.7. Electrophoretic mobility shift analysis of the 3' portion (-2315 to -2106) of the hypersensitive region revealed at least two nuclear factor binding sites, one of which is located between positions -2285 and -2256. Competitive inhibition studies localized the binding site to a 15-bp sequence between -2285 and -2271. Nuclear factor binding was lost by mutation of the 6-bp sequence from -2280 to -2275. The specific retarded complex formed with RAW264.7 nuclear extract was not detected under similar conditions with nuclear extracts from RLM-11, a murine T-cell line which does not express IL-1 beta RNA. Mutation of the 6-bp sequence (-2280 to -2275) in the chimeric IL-1 beta promoter -4093 +I CAT plasmid virtually eliminated the activation of this reporter gene by lipopolysaccharide (LPS) in transfected RAW264.7 cells. Multimerization of the 15-bp sequence containing the core wild-type 6-bp sequence 5' of minimal homologous or heterologous promoters in CAT reporter plasmids resulted in significant enhancement of CAT expression compared with parallel constructs containing the mutant 6-bp core sequence. This element was LPS independent and position and orientation dependent. The multimerized 15-bp sequence did not enhance expression in RLM-11 cells.(ABSTRACT TRUNCATED AT 250 WORDS) |