|  Help  |  About  |  Contact Us

Publication : Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene.

First Author  Jernvall J Year  1994
Journal  Int J Dev Biol Volume  38
Issue  3 Pages  463-9
PubMed ID  7848830 Mgi Jnum  J:21056
Mgi Id  MGI:69106 Citation  Jernvall J, et al. (1994) Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol 38(3):463-9
abstractText  The main morphological features of the mammalian tooth crown are cusps, but the developmental mechanisms that cause the formation of cusps are unknown. Tooth cusp formation commences at cap-stage with the appearance of the enamel knot, which is a cluster of non-dividing epithelial cells. In this study, enamel knot was first seen in embryonic mice molar teeth at the onset of cap-stage. Later in tooth development, secondary enamel knot structures were observed at the cusp tips and their appearance corresponded to the formation of individual cusp morphology. Comparisons of the pattern of cell proliferation in embryonic mouse molars and the expression of fibroblast growth factor-4 (Fgf-4) gene revealed that expression of Fgf-4 mRNA is strictly localized to the non-dividing cells of the enamel knot. However, when FGF-4 protein was introduced onto isolated dental tissues in vitro, it stimulated the proliferation of both dental epithelial and mesenchymal cells. Based on these results, we suggest that the enamel knot may control tooth morphogenesis by concurrently stimulating cusp growth (via FGF-4 synthesis) and by directing folding of cusp slopes (by not proliferating itself).
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

11 Expression

Trail: Publication