| First Author | Párrizas M | Year | 1997 |
| Journal | J Biol Chem | Volume | 272 |
| Issue | 1 | Pages | 154-61 |
| PubMed ID | 8995241 | Mgi Jnum | J:37653 |
| Mgi Id | MGI:85044 | Doi | 10.1074/jbc.272.1.154 |
| Citation | Parrizas M, et al. (1997) Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. J Biol Chem 272(1):154-61 |
| abstractText | The role of insulin-like growth factor 1 (IGF-1) in preventing apoptosis was examined in differentiated PC12 cells. Induction of differentiation was achieved using nerve growth factor, and apoptosis was provoked by serum withdrawal. After 4-6 h of serum deprivation, apoptosis was initiated, concomitant with a 30% decrease in cell number and a 75% decrease in MTT activity. IGF-1 was capable of preventing apoptosis at concentrations as low as 10(-9) M and as early as 4 h. The phosphatidylinositol 3' (PI3')-kinase inhibitors wortmannin (at concentrations of 10(-8) M) and LY294002 (10(-6) M) blocked the effect of IGF-1. The pp70 S6 kinase (pp70S6K) inhibitor rapamycin (10(-8) M) was, however, less effective in blocking IGF-1 action. Moreover, stable transfection of a dominant-negative p85 (subunit of PI3'-kinase) construct in PC12 cells enhanced apoptosis provoked by serum deprivation. Interestingly, in the cells overexpressing the dominant-negative p85 protein, IGF-1 was still capable of inhibiting apoptosis, suggesting the existence of a second pathway involved in the IGF-1 effect. Blocking the mitogen-activated protein kinase pathway with the specific mitogen-activated protein kinase/extracellular-response kinase kinase inhibitor PD098059 (10(-5) M) inhibited the IGF-1 effect. When wortmannin and PD098059 were given together, the effect was synergistic. The results presented here suggest that IGF-1 is capable of preventing apoptosis by activation of multiple signal transduction pathways. |