First Author | Dalton TP | Year | 1997 |
Journal | Mol Cell Biol | Volume | 17 |
Issue | 5 | Pages | 2781-9 |
PubMed ID | 9111349 | Mgi Jnum | J:40290 |
Mgi Id | MGI:87635 | Doi | 10.1128/mcb.17.5.2781 |
Citation | Dalton TP, et al. (1997) Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain. Mol Cell Biol 17(5):2781-9 |
abstractText | The DNA-binding activity of the Zn finger protein metal response element-binding transcription factor 1 (MTF-1) was rapidly induced both in vivo in mouse Hepa cells, canine MDCK, and human HeLa cells after incubation in medium containing zinc and in vitro in whole-cell extracts to which zinc was added. Acquisition of DNA-binding capacity in the presence of free zinc was temperature and time dependent and did not occur at 4 degrees C. In contrast, activated MTF-1 binding to the metal response element occurred at 4 degrees C. After Zn activation, mouse MTF-1 binding activity was more sensitive to EDTA and was stabilized by DNA binding relative to the Zn finger transcription factor Sp1. After dilution of nuclear or whole-cell extracts from Zn-treated cells and incubation at 37 degrees C, mouse MTF-1 DNA-binding activity was no longer detected but could be completely reconstituted by the subsequent readdition of zinc. In vitro-synthesized, recombinant mouse MTF-1 displayed a similar, reversible temperature- and Zn-dependent activation of DNA-binding activity. Analysis of deletion mutants of recombinant MTF-1 suggests that the Zn finger domain is important for the Zn-dependent activation of DNA-binding capacity. Thus, mouse MTF-1 functions as a reversibly activated sensor of free zinc pools in the cell. |