|  Help  |  About  |  Contact Us

Publication : Differential control of murine aldose reductase and fibroblast growth factor (FGF)-regulated-1 gene expression in NIH 3T3 cells by FGF-1 treatment and hyperosmotic stress.

First Author  Hsu DK Year  1997
Journal  Biochem J Volume  328 ( Pt 2)
Pages  593-8 PubMed ID  9371720
Mgi Jnum  J:44944 Mgi Id  MGI:1101522
Doi  10.1042/bj3280593 Citation  Hsu DK, et al. (1997) Differential control of murine aldose reductase and fibroblast growth factor (FGF)-regulated-1 gene expression in NIH 3T3 cells by FGF-1 treatment and hyperosmotic stress. Biochem J 328(Pt 2):593-8
abstractText  Aldose reductase (AR) is an NADPH-dependent aldo-keto reductase implicated in cellular osmoregulation and detoxification. Two distinct murine genes have been identified that are predicted to encode proteins with significant amino acid sequence identity with mouse AR: mouse vas deferens protein and fibroblast growth factor (FGF)-regulated-1 protein (FR-1). Here we report that the AR and FR-1 genes are differentially regulated in NIH 3T3 fibroblasts. FGF-1 stimulation of quiescent cells induces both AR and FR-1 mRNA levels, but the effect on FR-1 mRNA expression is significantly greater. FGF-1 treatment also increases FR-1 protein expression, as determined by Western-blot analysis using FR-1-specific polyclonal antiserum. Calf serum stimulation of quiescent cells increases AR mRNA expression but not FR-1 mRNA expression. Finally, when NIH 3T3 cells are grown in hypertonic medium, AR mRNA levels are significantly increased whereas FR-1 mRNA levels are only slightly up-regulated. These results indicate that the AR and FR-1 genes are differentially regulated in murine fibroblasts by two different growth-promoting agents and by hyperosmotic stress. Therefore these structurally related enzymes may have at least some distinct cellular functions; for example, although both AR and FR-1 activity may be important for the metabolic changes associated with cellular proliferation, AR may be the primary aldo-keto reductase involved in cellular osmoregulation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression