|  Help  |  About  |  Contact Us

Publication : Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes.

First Author  Amundadottir LT Year  1998
Journal  Oncogene Volume  16
Issue  6 Pages  737-46
PubMed ID  9488037 Mgi Jnum  J:46152
Mgi Id  MGI:1197191 Doi  10.1038/sj.onc.1201829
Citation  Amundadottir LT, et al. (1998) Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene 16(6):737-46
abstractText  We have assessed five signal transduction pathways to determine the role each might play in the malignant transformation of mammary epithelium initiated by neu, heregulin/NDF, TGFalpha, v-Ha-ras and c-myc in transgenic mice. The study involves a molecular and pharmacologic assessment of Erk/MAP kinase, Jnk/SAP kinase, PI 3-kinase, protein kinase C, and the Src-related kinases Lck and Fyn. Our results indicate that oncogenes capable of transforming mammary gland epithelium activate and require specific signal transduction pathways. For example, mammary tumors initiated by neu, v-Ha-ras and c-myc have high levels of active Erk/MAP kinase and their anchorage independent growth is strongly inhibited by PD098059, an inhibitor of Mek/ MAP kinase kinase. By contrast, Erk/MAP kinase activity is weak in tumors initiated by TFGalpha and heregulin/NDF and the corresponding cell lines are not growth inhibited by PD098059. Similarly, PI 3-kinase is strongly activated in neu, TGFalpha and heregulin/NDF initiated tumor cell lines, but not in c-myc or v-Ha-ras initiated tumor cell lines. The anchorage independent growth of all these tumor cell lines are, however, inhibited by the specific PI 3-kinase inhibitor LY294001. Further illustrating this oncogene-based specificity, PP1, a specific inhibitor of the Src-like kinases, Lck and Fyn, blocks anchorage- independent cell growth only in the TGFalpha initiated mammary tumor cell line. Taken together with additional observations, we conclude that certain oncogenes reliably require the recruitment/activation of specific signal transduction pathways. Such specific relationships between the initiating oncogene and a required pathway may reflect a direct activating effect or the parallel activation of a pathway that is a necessary oncogenic collaborator for transformation in the mammary gland. The work points to a molecular basis for targeting therapy when an initiating oncogene can be implicated; for example, because of amplification, increased expression, genetic alteration, or heritable characteristics.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

0 Bio Entities

0 Expression