First Author | Burkart V | Year | 1999 |
Journal | Nat Med | Volume | 5 |
Issue | 3 | Pages | 314-9 |
PubMed ID | 10086388 | Mgi Jnum | J:53307 |
Mgi Id | MGI:1332280 | Doi | 10.1038/6535 |
Citation | Burkart V, et al. (1999) Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med 5(3):314-9 |
abstractText | Human type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta cells during islet inflammation. Cytokines and reactive radicals released during this process contribute to beta-cell death. Here we show that mice with a disrupted gene coding for poly (ADP-ribose) polymerase (PARP-/- mice) are completely resistant to the development of diabetes induced by the beta-cell toxin streptozocin. The mice remained normoglycemic and maintained normal levels of total pancreatic insulin content and normal islet ultrastructure. Cultivated PARP-/- islet cells resisted streptozocin-induced lysis and maintained intracellular NAD+ levels. Our results identify NAD+ depletion caused by PARP activation as the dominant metabolic event in islet-cell destruction, and provide information for the development of strategies to prevent the progression or manifestation of the disease in individuals at risk of developing type 1 diabetes. |