|  Help  |  About  |  Contact Us

Publication : Downregulation of DNA excision repair by the hepatitis B virus-x protein occurs in p53-proficient and p53-deficient cells.

First Author  Groisman IJ Year  1999
Journal  Carcinogenesis Volume  20
Issue  3 Pages  479-83
PubMed ID  10190565 Mgi Jnum  J:53530
Mgi Id  MGI:1332900 Doi  10.1093/carcin/20.3.479
Citation  Groisman IJ, et al. (1999) Downregulation of DNA excision repair by the hepatitis B virus-x protein occurs in p53-proficient and p53-deficient cells. Carcinogenesis 20(3):479-83
abstractText  Synergism between exposure to chemical carcinogens and infection with the hepatitis B virus (HBV) has been implicated in the high incidence of hepatocellular carcinoma. In this study we report that the HBV protein HBx, inhibits cellular DNA repair capacity in a p53-independent manner. Two alternative assays were used: the host cell reactivation assay, which measures the cell's capacity to repair DNA damage in a reporter plasmid, and unscheduled DNA synthesis, which measures the overall DNA repair capacity in damaged cells. Two p53-proficient cell lines, the hepatocellular carcinoma cell line HepG2 and liver epithelial cell line CCL13, were co-transfected with the pCMV-HBx reporter plasmid and the pCMV-CAT plasmid damaged with UVC radiation. Compared with cells transfected with control plasmid, the presence of HBx resulted in approximately 50% inhibition of the cell's capacity to reactivate CAT activity of UVC-damaged plasmid, and approximately 25% inhibition of unscheduled DNA synthesis in cells treated with either aflatoxin B1 epoxide or UVC radiation. Using the p53-deficient cell line Saos-2, we demonstrated that expression of HBx also resulted in diminished overall cellular DNA repair of damage induced by both aflatoxin B1 epoxide and UVC radiation, using both the host cell reactivation and unscheduled DNA synthesis assays. In summary, this study provides evidence for p53-independent regulation of DNA repair by HBx.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression