|  Help  |  About  |  Contact Us

Publication : Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta f508.

First Author  DeCarvalho AC Year  2002
Journal  J Biol Chem Volume  277
Issue  39 Pages  35896-905
PubMed ID  12110684 Mgi Jnum  J:79311
Mgi Id  MGI:2387790 Doi  10.1074/jbc.M205644200
Citation  DeCarvalho AC, et al. (2002) Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta f508. J Biol Chem 277(39):35896-905
abstractText  The gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an ATP binding cassette (ABC) transporter that functions as a phosphorylation- and nucleotide-regulated chloride channel, is mutated in cystic fibrosis (CF) patients. Deletion of a phenylalanine at amino acid position 508 (DeltaF508) in the first nucleotide binding domain (NBD1) is the most prevalent CF-causing mutation and results in defective protein processing and reduced CFTR function, leading to chloride impermeability in CF epithelia and heterologous systems. Using a STE6/CFTRDeltaF508 chimera system in yeast, we isolated two novel DeltaF508 revertant mutations, I539T and G550E, proximal to and within the conserved ABC signature motif of NBD1, respectively. Western blot and functional analysis in mammalian cells indicate that mutations I539T and G550E each partially rescue the CFTRDeltaF508 defect. Furthermore, a combination of both revertant mutations resulted in a 38-fold increase in CFTRDeltaF508-mediated chloride current, representing 29% of wild type channel activity. The G550E mutation increased the sensitivity of CFTRDeltaF508 and wild type CFTR to activation by cAMP agonists and blocked the enhancement of CFTRDeltaF508 channel activity by 2 mm 3-isobutyl-1-methylxanthine. The data show that the DeltaF508 defect can be significantly rescued by second-site mutations in the nucleotide binding domain 1 region, that includes the LSGGQ consensus motif.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression