|  Help  |  About  |  Contact Us

Publication : Granulocyte/macrophage-colony-stimulating factor (GM-CSF) regulates lung innate immunity to lipopolysaccharide through Akt/Erk activation of NFkappa B and AP-1 in vivo.

First Author  Bozinovski S Year  2002
Journal  J Biol Chem Volume  277
Issue  45 Pages  42808-14
PubMed ID  12208854 Mgi Jnum  J:80050
Mgi Id  MGI:2429461 Doi  10.1074/jbc.M207840200
Citation  Bozinovski S, et al. (2002) Granulocyte/macrophage-colony-stimulating factor (GM-CSF) regulates lung innate immunity to lipopolysaccharide through Akt/Erk activation of NFkappa B and AP-1 in vivo. J Biol Chem 277(45):42808-14
abstractText  The lung innate immune response to lipopolysaccharide (LPS) coordinates cellular inflammation, mediator, and protease release essential for host defense but deleterious in asthma, chronic obstructive pulmonary disease, and cystic fibrosis. In vitro, LPS signals to the transcription factors NFkappaB via TLR4, MyD88, and IL-1R-associated kinase (IRAK), to AP-1 by mitogen-activated protein (MAP) kinases, and via an alternate route in IRAK-deficient mice, but the in vivo lung signaling pathway(s) are not understood. We investigated the role of Akt and Erk1/2 as LPS intensely stimulates granulocyte/macrophage-colony-stimulating factor (GM-CSF) release, and neutralizing GM-CSF profoundly suppressed LPS-induced inflammation, suppressed expression and activity of lung proteases, significantly reduced GM-CSF and tumor necrosis factor alpha (TNFalpha) mRNA expression, and dampened nuclear localization of both NFkappaB (p50/65) and AP-1. LPS markedly activated Akt and Erk1/2, but not p38, in a GM-CSF-dependent manner in direct temporal association with NFkappaB and AP-1 activation. Pharmacological inhibition of Akt or Erk activation in LPS-treated tracheal explants ex vivo inhibited the release of GM-CSF. These data implicate GM-CSF-dependent activation of Akt in the amplification of this response and demonstrate the role of Erks rather than p38 in lung LPS inflammatory responses. Inhibition of GM-CSF may be of therapeutic benefit in inflammatory diseases in which LPS contributes to lung damage.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression