|  Help  |  About  |  Contact Us

Publication : Akt plays a central role in sarcomagenesis induced by Kaposi's sarcoma herpesvirus-encoded G protein-coupled receptor.

First Author  Sodhi A Year  2004
Journal  Proc Natl Acad Sci U S A Volume  101
Issue  14 Pages  4821-6
PubMed ID  15047889 Mgi Jnum  J:90218
Mgi Id  MGI:3042698 Doi  10.1073/pnas.0400835101
Citation  Sodhi A, et al. (2004) Akt plays a central role in sarcomagenesis induced by Kaposi's sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci U S A 101(14):4821-6
abstractText  We have recently engineered an in vivo endothelial cell-specific retroviral gene transfer system and found that a single Kaposi's sarcoma (KS)-associated herpesvirus/human herpesvirus 8 gene encoding a G protein-coupled receptor (vGPCR), is sufficient to induce KS-like tumors in mice. By using this system, we show here that the Akt signaling pathway plays a central role in vGPCR oncogenesis. Indeed, a constitutively active Akt was sufficient to induce benign hemangiomas in mice, whereas heterozyogosity for PTEN (the phosphatase and tension homologue deleted on chromosome 10), modestly enhancing basal Akt activity, dramatically enhanced vGPCR sarcomagenesis. Examination of KS biopsies from AIDS patients revealed active Akt as a prominent feature, supportive of a role for Akt in human Kaposi's sarcomagenesis. By using a vGPCR agonist-dependent mutant, we further establish constitutive activity as a requirement for vGPCR sarcomagenesis, validating targeted inhibition of key vGPCR signaling pathways as an approach for preventing its oncogenic potential. These observations prompted us to explore the efficacy of inhibiting Akt activation as a molecular approach to KS treatment. Pharmacological inhibition of the Akt pathway with the chemotherapeutic agent 7-hydroxystaurosporine prevented proliferation of vGPCR-expressing endothelial cells in vitro and inhibited their tumorigenic potential in vivo. Both were associated with a decrease in Akt activity. These results identify Akt as an essential player in vGPCR sarcomagenesis and demonstrate the therapeutic potential of drugs targeting this pathway in the treatment of KS.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression