First Author | Wang X | Year | 2005 |
Journal | Mol Cell Biol | Volume | 25 |
Issue | 11 | Pages | 4742-51 |
PubMed ID | 15899875 | Mgi Jnum | J:99102 |
Mgi Id | MGI:3581110 | Doi | 10.1128/MCB.25.11.4742-4751.2005 |
Citation | Wang X, et al. (2005) FLIP protects against hypoxia/reoxygenation-induced endothelial cell apoptosis by inhibiting Bax activation. Mol Cell Biol 25(11):4742-51 |
abstractText | Hypoxia/reoxygenation causes cell death, yet the underlying regulatory mechanisms remain partially understood. Recent studies demonstrate that hypoxia/reoxygenation can activate death receptor and mitochondria-dependent apoptotic pathways, involving Bid and Bax mitochondrial translocation and cytochrome c release. Using mouse lung endothelial cells (MLEC), we examined the role of FLIP, an inhibitor of caspase 8, in hypoxia/reoxygenation-induced cell death. FLIP protected MLEC against hypoxia/reoxygenation by blocking both caspase 8/Bid and Bax/mitochondrial apoptotic pathways. FLIP inhibited Bax activation in wild-type and Bid(-/-) MLEC, indicating independence from the caspase 8/Bid pathway. FLIP also inhibited the expression and activation of protein kinase C (PKC) (alpha, zeta) during hypoxia/reoxygenation and promoted an association of inactive forms of PKC with Bax. Surprisingly, FLIP expression also inhibited death-inducing signal complex (DISC) formation in the plasma membrane and promoted the accumulation of the DISC in the Golgi apparatus. FLIP expression also upregulated Bcl-X(L), an antiapoptotic protein. In conclusion, FLIP decreased DISC formation in the plasma membrane by blocking its translocation from the Golgi apparatus and inhibited Bax activation through a novel PKC-dependent mechanism. The inhibitory effects of FLIP on Bax activation and plasma membrane DISC formation may play significant roles in protecting endothelial cells from the lethal effects of hypoxia/reoxygenation. |