First Author | Jeong SY | Year | 2004 |
Journal | EMBO J | Volume | 23 |
Issue | 10 | Pages | 2146-55 |
PubMed ID | 15131699 | Mgi Jnum | J:114796 |
Mgi Id | MGI:3690174 | Doi | 10.1038/sj.emboj.7600225 |
Citation | Jeong SY, et al. (2004) Bcl-x(L) sequesters its C-terminal membrane anchor in soluble, cytosolic homodimers. EMBO J 23(10):2146-55 |
abstractText | Bcl-x(L) is a potent inhibitor of apoptosis. While Bcl-x(L) can be bound to mitochondria, a substantial fraction, depending on the cell type or tissue, is found in the cytosol of healthy cells. Gel filtration and crosslinking experiments reveal that, unlike monomeric Bax, Bcl-x(L) migrates in a complex of approximately 50 kDa in the cytosol. Co-immunoprecipitation experiments indicate that Bcl-x(L) in the cytosol forms homodimers. The C-terminal hydrophobic tails of two Bcl-x(L) molecules are involved in homodimer formation, and analysis of mutants demonstrates that the C-terminal lysine residue and the G138 residue lining the BH3-binding pocket are required for homodimerization. The flexible loop preceding the C-terminal tail in Bcl-x(L) is longer than that of several monomeric Bcl-2 family members and is a requisite for the homodimer formation. Bad binding to Bcl-x(L) dissociates the homodimers and triggers Bcl-x(L) binding to mitochondrial membranes. The C-terminal tail of Bcl-x(L) is also required to mediate Bcl-x(L)/Bax heterodimer formation. Both mitochondrial import and antiapoptotic activity of different Bcl-x(L) mutants correlate with their ability to form homodimers. |