|  Help  |  About  |  Contact Us

Publication : A single dose of methamphetamine leads to a long term reversal of the blunted dopamine D1 receptor-mediated neocortical c-fos responses in mice deficient for D2 and D3 receptors.

First Author  Schmauss C Year  2000
Journal  J Biol Chem Volume  275
Issue  49 Pages  38944-8
PubMed ID  11007776 Mgi Jnum  J:115116
Mgi Id  MGI:3690686 Doi  10.1074/jbc.M005064200
Citation  Schmauss C (2000) A single dose of methamphetamine leads to a long term reversal of the blunted dopamine D1 receptor-mediated neocortical c-fos responses in mice deficient for D2 and D3 receptors. J Biol Chem 275(49):38944-8
abstractText  Dopamine D(1) receptors play an essential role in the induction of expression of the immediate-early gene c-fos in response to pharmacological stimuli. In the forebrain of wild-type mice, administration of a D(1) receptor agonist leads to c-fos mRNA expression levels that are substantially higher than corresponding levels expressed after indirect stimulation of dopamine receptors with methamphetamine. In mice deficient for D(2) and D(3) receptors, c-fos mRNA levels expressed in response to D(1) agonist administration are significantly blunted. However, a single dose of methamphetamine (5 mg/kg) leads to a long lasting reversal of the blunted c-fos responses in these mutants. In the forebrain, this reversal is restricted to the neocortex. Moreover, methamphetamine also enhances c-fos expression levels in preadolescent wild-type mice that normally express low c-fos mRNA in response to D(1) agonist stimulation. Thus, a single dose of methamphetamine leads to a long term increase in D(1) receptor-dependent c-fos responses in brains with either low (preadolescent mice) or blunted (adult D(2) and D(3) mutant mice) c-fos expression levels. A similar long term reversal of the blunted c-fos responses is achieved with a single dose of a full D(1) agonist. These results indicate that the constitutive inactivation of D(2) and D(3) receptors leads to a decrease in agonist-promoted D(1) receptor activity that can be reversed by intermittent agonist stimulation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Authors

1 Bio Entities

Trail: Publication

0 Expression