| First Author | Tan M | Year | 2003 |
| Journal | J Neurosci | Volume | 23 |
| Issue | 32 | Pages | 10292-301 |
| PubMed ID | 14614088 | Mgi Jnum | J:120022 |
| Mgi Id | MGI:3703688 | Doi | 10.1523/JNEUROSCI.23-32-10292.2003 |
| Citation | Tan M, et al. (2003) Phosphoinositide 3-kinase cascade facilitates mu-opioid desensitization in sensory neurons by altering G-protein-effector interactions. J Neurosci 23(32):10292-301 |
| abstractText | Signaling via G-protein-coupled receptors undergoes desensitization after prolonged agonist exposure. Here we investigated the role of phosphoinositide 3-kinase (PI3K) and its downstream pathways in desensitization of micro-opioid inhibition of neuronal Ca2+ channels. In cultured mouse dorsal root ganglion neurons, two mechanistically different forms of desensitization were observed after acute or chronic treatment with the micro agonist [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO). Chronic DAMGO desensitization was heterologous in nature and significantly attenuated by blocking the activity of PI3K or mitogen-activated protein kinase (MAPK). A combined application of PI3K and MAPK inhibitors showed no additive effect, suggesting that these two kinases act in a common pathway to facilitate chronic desensitization. Acute DAMGO desensitization, however, was not affected by the inhibitors. Furthermore, upregulation of the PI3K-Akt pathway in mutant mice lacking phosphatase and tensin homolog, a lipid phosphatase counteracting PI3K, selectively enhanced chronic desensitization in a PI3K- and MAPK-dependent manner. Using the prepulse facilitation (PPF) test, we further examined changes in the voltage-dependent component of DAMGO action that requires direct interactions between betagamma subunits of G-proteins and Ca2+ channels. DAMGO-induced PPF was diminished after chronic treatment, suggesting disruption of G-protein-channel interactions. Such disruption could occur at the postreceptor level, because chronic DAMGO also reduced GTPgammaS-induced PPF that was independent of receptor activation. Again, inhibition of PI3K or MAPK reduced desensitization of PPF. Our data suggest that the PI3Kcascade involving MAPK and Akt enhances micro-opioid desensitization via postreceptor modifications that interfere with G-protein-effector interactions. |