|  Help  |  About  |  Contact Us

Publication : PED/PEA-15 regulates glucose-induced insulin secretion by restraining potassium channel expression in pancreatic beta-cells.

First Author  Miele C Year  2007
Journal  Diabetes Volume  56
Issue  3 Pages  622-33
PubMed ID  17327429 Mgi Jnum  J:122026
Mgi Id  MGI:3713008 Doi  10.2337/db06-1260
Citation  Miele C, et al. (2007) PED/PEA-15 regulates glucose-induced insulin secretion by restraining potassium channel expression in pancreatic beta-cells. Diabetes 56(3):622-33
abstractText  The phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (ped/pea-15) gene is overexpressed in human diabetes and causes this abnormality in mice. Transgenic mice with beta-cell-specific overexpression of ped/pea-15 (beta-tg) exhibited decreased glucose tolerance but were not insulin resistant. However, they showed impaired insulin response to hyperglycemia. Islets from the beta-tg also exhibited little response to glucose. mRNAs encoding the Sur1 and Kir6.2 potassium channel subunits and their upstream regulator Foxa2 were specifically reduced in these islets. Overexpression of PED/PEA-15 inhibited the induction of the atypical protein kinase C (PKC)-zeta by glucose in mouse islets and in beta-cells of the MIN-6 and INS-1 lines. Rescue of PKC-zeta activity elicited recovery of the expression of the Sur1, Kir6.2, and Foxa2 genes and of glucose-induced insulin secretion in PED/PEA-15-overexpressing beta-cells. Islets from ped/pea-15-null mice exhibited a twofold increased activation of PKC-zeta by glucose; increased abundance of the Sur1, Kir6.2, and Foxa2 mRNAs; and enhanced glucose effect on insulin secretion. In conclusion, PED/PEA-15 is an endogenous regulator of glucose-induced insulin secretion, which restrains potassium channel expression in pancreatic beta-cells. Overexpression of PED/PEA-15 dysregulates beta-cell function and is sufficient to impair glucose tolerance in mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression