|  Help  |  About  |  Contact Us

Publication : Mammalian NOTCH-1 activates beta1 integrins via the small GTPase R-Ras.

First Author  Hodkinson PS Year  2007
Journal  J Biol Chem Volume  282
Issue  39 Pages  28991-9001
PubMed ID  17664272 Mgi Jnum  J:125383
Mgi Id  MGI:3758396 Doi  10.1074/jbc.M703601200
Citation  Hodkinson PS, et al. (2007) Mammalian NOTCH-1 activates beta1 integrins via the small GTPase R-Ras. J Biol Chem 282(39):28991-9001
abstractText  Notch is a central regulator of important cell fate decisions. Notch activation produces diverse cellular effects suggesting the presence of context-dependent control mechanisms. Genetic studies have demonstrated that Notch and integrin mutations have related phenotypes in key developmental processes such as vascular development and somitogenesis. We show that the intracellular domain of mammalian Notch-1 activates integrins without affecting integrin expression. Integrin activation is dependent on gamma-secretase-mediated intramembranous cleavage of membrane-bound Notch releasing intracellular Notch that activates R-Ras, independent of CSL-transcription. Notch also reverses H-Ras and Raf-mediated integrin suppression without affecting ERK phosphorylation. Membrane-bound Notch mutants that are inefficiently cleaved or intracellular Notch mutants lacking the ankyrin repeat sequence do not activate R-Ras or integrins. Co-expression of Msx2-interacting nuclear target (MINT) protein with Notch or expression of intracellular Notch-1 truncation mutants lacking the C-terminal transactivation/PEST domain suppresses Notch transcriptional activity without affecting integrin activation. Notch ligand, Delta-like ligand-4, stimulates R-Ras-dependent alpha 5 beta 1 integrin-mediated adhesion, demonstrating the physiological relevance of this pathway. This new CSL-independent Notch/R-Ras pathway provides a molecular mechanism to explain Notch, integrin, and Ras cross-talk during the development of multicellular organisms.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression