|  Help  |  About  |  Contact Us

Publication : Influence of tertiary structure domain properties on the functionality of apolipoprotein A-I.

First Author  Tanaka M Year  2008
Journal  Biochemistry Volume  47
Issue  7 Pages  2172-80
PubMed ID  18205410 Mgi Jnum  J:132619
Mgi Id  MGI:3776365 Doi  10.1021/bi702332b
Citation  Tanaka M, et al. (2008) Influence of tertiary structure domain properties on the functionality of apolipoprotein A-I. Biochemistry 47(7):2172-80
abstractText  The tertiary structure of apolipoprotein (apo) A-I and the contributions of structural domains to the properties of the protein molecule are not well defined. We used a series of engineered human and mouse apoA-I molecules in a range of physical-biochemical measurements to address this issue. Circular dichroism measurements of alpha-helix thermal unfolding and fluorescence spectroscopy measurements of 8-anilino-1-napthalenesulfonic acid binding indicate that removal of the C-terminal 54 amino acid residues from human and mouse apoA-I has similar effects; the molecules are only slightly destabilized, and there is a decrease in hydrophobic surface exposure. These results are consistent with both human and mouse apoA-I adopting a two-domain tertiary structure, comprising an N-terminal antiparallel helix bundle domain and a separate less ordered C-terminal domain. Mouse apoA-I is significantly less resistant than human apoA-I to thermal and chemical denaturation; the midpoint of thermal unfolding of mouse apoA-I at 45 degrees C is 15 degrees C lower and the midpoint of guanidine hydrochloride denaturation (D1/2) occurs at 0.5 M as compared to 1.0 M for human apoA-I. These differences reflect the overall greater stability of the helix bundle formed by residues 1-189 in human apoA-I. Measurements of the heats of binding to egg phosphatidylcholine (PC) small unilamellar vesicles and the kinetics of solubilization of dimyristoyl PC multilamellar vesicles indicate that the more stable human helix bundle interacts poorly with lipids as compared to the equivalent mouse N-terminal domain. The C-terminal domain of human apoA-I is much more hydrophobic than that of mouse apoA-I; in the lipid-free state the human C-terminal domain (residues 190-243) is partially alpha-helical and undergoes cooperative unfolding (D1/2 = 0.3 M) whereas the isolated mouse C-terminal domain (residues 187-240) is disordered in dilute solution. The human C-terminal domain binds to lipid surfaces much more avidly than the equivalent mouse domain. Human and mouse apoA-I have very different tertiary structure domain contributions for achieving functionality. It is clear that the stability of the N-terminal helix bundle, and the hydrophobicity and alpha-helix content of the C-terminal domain, are critical factors in determining the overall properties of the apoA-I molecule.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression