|  Help  |  About  |  Contact Us

Publication : Intrinsic and antigen-induced airway hyperresponsiveness are the result of diverse physiological mechanisms.

First Author  Wagers SS Year  2007
Journal  J Appl Physiol (1985) Volume  102
Issue  1 Pages  221-30
PubMed ID  17008432 Mgi Jnum  J:135838
Mgi Id  MGI:3794665 Doi  10.1152/japplphysiol.01385.2005
Citation  Wagers SS, et al. (2007) Intrinsic and antigen-induced airway hyperresponsiveness are the result of diverse physiological mechanisms. J Appl Physiol 102(1):221-30
abstractText  Airway hyperresponsiveness (AHR) is a defining feature of asthma. We have previously shown, in mice sensitized and challenged with antigen, that AHR is attributable to normal airway smooth muscle contraction with exaggerated airway closure. In the present study we sought to determine if the same was true for mice known to have intrinsic AHR, the genetic strain of mice, A/J. We found that A/J mice have AHR characterized by minimal increase in elastance following aerosolized methacholine challenge compared with mice (BALB/c) that have been antigen sensitized and challenged [concentration that evokes 50% change in elastance (PC(50)): 22.9 +/- 5.7 mg/ml for A/J vs. 3.3 +/- 0.4 mg/ml for antigen-challenged and -sensitized mice; P < 0.004]. Similar results were found when intravenous methacholine was used (PC(30) 0.22 +/- 0.08 mg/ml for A/J vs. 0.03 +/- 0.004 mg/ml for antigen-challenged and -sensitized mice). Computational model analysis revealed that the AHR in A/J mice is dominated by exaggerated airway smooth muscle contraction and that when the route of methacholine administration was changed to intravenous, central airway constriction dominates. Absorption atelectasis was used to provide evidence of the lack of airway closure in A/J mice. Bronchoconstriction during ventilation with 100% oxygen resulted in a mean 9.8% loss of visible lung area in A/J mice compared with 28% in antigen-sensitized and -challenged mice (P < 0.02). We conclude that the physiology of AHR depends on the mouse model used and the route of bronchial agonist administration.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression