|  Help  |  About  |  Contact Us

Publication : Transient down-regulation of cbfa1/Runx2 by RNA interference in murine C3H10T1/2 mesenchymal stromal cells delays in vitro and in vivo osteogenesis, but does not overtly affect chondrogenesis.

First Author  Gordeladze JO Year  2008
Journal  Exp Cell Res Volume  314
Issue  7 Pages  1495-506
PubMed ID  18313048 Mgi Jnum  J:136570
Mgi Id  MGI:3796495 Doi  10.1016/j.yexcr.2007.12.023
Citation  Gordeladze JO, et al. (2008) Transient down-regulation of cbfa1/Runx2 by RNA interference in murine C3H10T1/2 mesenchymal stromal cells delays in vitro and in vivo osteogenesis, but does not overtly affect chondrogenesis. Exp Cell Res 314(7):1495-506
abstractText  In order to ensure that MSCs designed for in vivo cartilage repair do not untowardly differentiate into osteoblasts and mineralize in situ, we tested whether siRNA-induced suppression of cbfa1/Runx2 affected the osteogenic and chondrogenic differentiation potential of the murine cell line C3H10T1/2. Anti-cbfa1/Runx2 siRNA decreased the levels of cbfa1/Runx2 mRNA and protein by 65-80%, and also markedly reduced the expression of osteoblast-related genes such as Dlx5, osterix, collagen type I, alkaline phosphatase (AP), osteocalcin, SPARC/osteonectin and osteopontin, leading to a temporal expression of AP enzyme activity and mineralization potential delayed by at least some 7-9 days. Furthermore, siRNA-transfected cells, grown under chondrogenic conditions did not display biologically significant changes in the expression of aggrecan, collagen type II or type X, or histology when grown in micropellets or monolayer cultures. Finally, when cells were propagated in osteogenic medium and injected into the tibial muscles of SCID mice, no overtly mineralized bone tissue emerged. These experiments indicate that a major transient reduction of cbfa1/Runx2 expression in MSCs is sufficient to delay osteoblastic differentiation, both in vitro and in vivo, while chondrogenesis seemed to be sustained.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression