|  Help  |  About  |  Contact Us

Publication : Diacylglycerol kinase-epsilon restores cardiac dysfunction under chronic pressure overload: a new specific regulator of Galpha(q) signaling cascade.

First Author  Niizeki T Year  2008
Journal  Am J Physiol Heart Circ Physiol Volume  295
Issue  1 Pages  H245-55
PubMed ID  18487437 Mgi Jnum  J:138208
Mgi Id  MGI:3804565 Doi  10.1152/ajpheart.00066.2008
Citation  Niizeki T, et al. (2008) Diacylglycerol kinase-epsilon restores cardiac dysfunction under chronic pressure overload: a new specific regulator of Galpha(q) signaling cascade. Am J Physiol Heart Circ Physiol 295(1):H245-55
abstractText  Galpha(q) protein-coupled receptor (GPCR) signaling pathway, which includes diacylglycerol (DAG) and protein kinase C (PKC), plays a critical role in cardiac hypertrophy. DAG kinase (DGK) catalyzes DAG phosphorylation and controls cellular DAG levels, thus acting as a regulator of GPCR signaling. It has been reported that DGKepsilon acts specifically on DAG produced by inositol cycling. In this study, we examined whether DGKepsilon prevents cardiac hypertrophy and progression to heart failure under chronic pressure overload. We generated transgenic mice with cardiac-specific overexpression of DGKepsilon (DGKepsilon-TG) using an alpha-myosin heavy chain promoter. There were no differences in cardiac morphology and function between wild-type (WT) and DGKepsilon-TG mice at the basal condition. Either continuous phenylephrine infusion or thoracic transverse aortic constriction (TAC) was performed in WT and DGKepsilon-TG mice. Increases in heart weight after phenylephrine infusion and TAC were abolished in DGKepsilon-TG mice compared with WT mice. Cardiac dysfunction after TAC was prevented in DGKepsilon-TG mice, and the survival rate after TAC was higher in DGKepsilon-TG mice than in WT mice. Phenylephrine- and TAC-induced DAG accumulation, the translocation of PKC isoforms, and the induction of fetal genes were blocked in DGKepsilon-TG mouse hearts. The upregulation of transient receptor potential channel (TRPC)-6 expression after TAC was attenuated in DGKepsilon-TG mice. In conclusion, these results demonstrate the first evidence that DGKepsilon restores cardiac dysfunction and improves survival under chronic pressure overload by controlling cellular DAG levels and TRPC-6 expression. DGKepsilon may be a novel therapeutic target to prevent cardiac hypertrophy and progression to heart failure.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression