First Author | Ikeda O | Year | 2008 |
Journal | Mol Cell Biol | Volume | 28 |
Issue | 16 | Pages | 5027-42 |
PubMed ID | 18573890 | Mgi Jnum | J:139741 |
Mgi Id | MGI:3810004 | Doi | 10.1128/MCB.00194-08 |
Citation | Ikeda O, et al. (2008) STAP-2 negatively regulates both canonical and noncanonical NF-kappaB activation induced by Epstein-Barr virus-derived latent membrane protein 1. Mol Cell Biol 28(16):5027-42 |
abstractText | The signal-transducing adaptor protein 2 (STAP-2) is a recently identified adaptor protein that contains a pleckstrin homology (PH) and Src homology 2 (SH2)-like domains, as well as a proline-rich domain in its C-terminal region. In previous studies, we demonstrated that STAP-2 binds to MyD88 and IKK-alpha or IKK-beta and modulates NF-kappaB signaling in macrophages. In the present study, we found that ectopic expression of STAP-2 inhibited Epstein-Barr virus (EBV) LMP1-mediated NF-kappaB signaling and interleukin-6 expression. Indeed, STAP-2 associated with LMP1 through its PH and SH2-like domains, and these proteins interacted with each other in EBV-positive human B cells. We found, furthermore, that STAP-2 regulated LMP1-mediated NF-kappaB signaling through direct or indirect interactions with the tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) and TNFR-associated death domain (TRADD) proteins. STAP-2 mRNA was induced by the expression of LMP1 in human B cells. Furthermore, transient expression of STAP-2 in EBV-positive human B cells decreased cell growth. Finally, STAP-2 knockout mouse embryonic fibroblasts showed enhanced LMP1-induced cell growth. These results suggest that STAP-2 acts as an endogenous negative regulator of EBV LMP1-mediated signaling through TRAF3 and TRADD. |