First Author | Richez C | Year | 2009 |
Journal | J Immunol | Volume | 182 |
Issue | 2 | Pages | 820-8 |
PubMed ID | 19124725 | Mgi Jnum | J:143496 |
Mgi Id | MGI:3827039 | Doi | 10.4049/jimmunol.182.2.820 |
Citation | Richez C, et al. (2009) TLR4 ligands induce IFN-alpha production by mouse conventional dendritic cells and human monocytes after IFN-beta priming. J Immunol 182(2):820-8 |
abstractText | Exacerbation of disease in systemic lupus erythematosus (SLE) is associated with bacterial infection. In conventional dendritic cells (cDCs), the TLR4 ligand bacterial LPS induces IFN-beta gene expression but does not induce IFN-alpha. We hypothesized that when cDCs are primed by cytokines, as may frequently be the case in SLE, LPS would then induce the production of IFN-alpha, a cytokine believed to be important in lupus pathogenesis. In this study we show that mouse cDCs and human monocytes produce abundant IFN-alpha following TLR4 engagement whether the cells have been pretreated either with IFN-beta or with a supernatant from DCs activated by RNA-containing immune complexes from lupus patients. This TLR4-induced IFN-alpha induction is mediated by both an initial TRIF-dependent pathway and a subsequent MyD88-dependent pathway, in contrast to TLR3-induced IFN-alpha production, which is entirely TRIF-dependent. There is also a distinct requirement for IFN regulatory factors (IRFs), with LPS-induced IFN-alpha induction being entirely IRF7- and partially IRF5-dependent, in contrast to LPS -induced IFN-beta gene induction which is known to be IRF3-dependent but largely IRF7-independent. This data demonstrates a novel pathway for IFN-alpha production by cDCs and provides one possible explanation for how bacterial infection might precipitate disease flares in SLE. |