|  Help  |  About  |  Contact Us

Publication : Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes.

First Author  Dhar SS Year  2009
Journal  J Neurosci Volume  29
Issue  2 Pages  483-92
PubMed ID  19144849 Mgi Jnum  J:144497
Mgi Id  MGI:3831040 Doi  10.1523/JNEUROSCI.3704-08.2009
Citation  Dhar SS, et al. (2009) Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci 29(2):483-92
abstractText  Neuronal activity and energy metabolism are tightly coupled processes. Regions high in neuronal activity, especially of the glutamatergic type, have high levels of cytochrome c oxidase (COX). Perturbations in neuronal activity affect the expressions of COX and glutamatergic NMDA receptor subunit 1 (NR1). The present study sought to test our hypothesis that the coupling extends to the transcriptional level, whereby NR1 and possibly other NR subunits and COX are coregulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), which regulates all COX subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutations, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Grin 1 (NR1), Grin 2b (NR2b) and COX subunit genes, but not of Grin2a and Grin3a genes. These transcripts were upregulated by KCl and downregulated by tetrodotoxin (TTX) in cultured primary neurons. However, silencing of NRF-1 with small interference RNA blocked the upregulation of Grin1, Grin2b, and COX induced by KCl, and overexpression of NRF-1 rescued these transcripts that were suppressed by TTX. NRF-1 binding sites on Grin1 and Grin2b genes are also highly conserved among mice, rats, and humans. Thus, NRF-1 is an essential transcription factor critical in the coregulation of NR1, NR2b, and COX, and coupling exists at the transcriptional level to ensure coordinated expressions of proteins important for synaptic transmission and energy metabolism.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

1 Bio Entities

Trail: Publication

0 Expression