|  Help  |  About  |  Contact Us

Publication : Cardiac expression of adenine nucleotide translocase-1 in transgenic mice overexpressing bovine GH.

First Author  Bogazzi F Year  2007
Journal  J Endocrinol Volume  194
Issue  3 Pages  521-7
PubMed ID  17761891 Mgi Jnum  J:145237
Mgi Id  MGI:3834024 Doi  10.1677/JOE-07-0233
Citation  Bogazzi F, et al. (2007) Cardiac expression of adenine nucleotide translocase-1 in transgenic mice overexpressing bovine GH. J Endocrinol 194(3):521-7
abstractText  Heart hypertrophy is a common finding of acromegaly, a syndrome due to GH excess. Impairment of adenine nucleotide translocase-1 (ANT-1) gene, the main mitochondrial ADP/ATP exchanger, leads to cardiac hypertrophy. The aim of the study was to evaluate cardiac expression and the functional role of ANT-1 in 1- to 12-month-old transgenic mice overexpressing bovine GH (acromegalic mice, Acro) and littermate controls (wild-type mice, Wt). GH specificity of protein degree variation was assessed treating Acro with pegvisomant, a GH receptor competitor. Tissue levels of ANT-1, NF-kappaB, ATP, and lactic acid were evaluated by western blot, bioluminescence, and Fourier transform infrared spectroscopy respectively. The degree of ANT-1 expression was higher in 1-month-old Acro than in Wt (47+/-5% OD vs 33+/-4% OD, P<0 01). On the contrary, ANT-1 expression was lower in 3- to 12-month-old Acro than in Wt (P<0 03). Changes in ANT-1 expression were associated with consistent changes of cellular ATP content, increasing at 1 month (P<0 05) and reducing thereafter in Acro when compared with Wt (P<0 04). Treatment with pegvisomant abolished ANT-1 and ATP changes observed in 1- and 3-month-old Acro, thus supporting a GH-dependent mechanism. Reduced ATP generation in hypertrophied hearts of older Acro was associated with increased lactic acid levels suggesting that part of energy was due to glycolysis. Variations in ANT-1 expression were linked to GH through changes in NF-kappaB, the levels of which changed accordingly. In conclusion, 1-month-old acromegalic mice had increased ANT-1 expression and higher degree of ATP production. Long-standing disease was associated with a consistent reduction of ANT-1 and ATP tissue levels, which became GH-independent in older animals. This study demonstrated a direct effect of GH on key proteins involved in energy metabolism of acromegalic hearts.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression