First Author | Bogazzi F | Year | 2007 |
Journal | J Endocrinol | Volume | 194 |
Issue | 3 | Pages | 521-7 |
PubMed ID | 17761891 | Mgi Jnum | J:145237 |
Mgi Id | MGI:3834024 | Doi | 10.1677/JOE-07-0233 |
Citation | Bogazzi F, et al. (2007) Cardiac expression of adenine nucleotide translocase-1 in transgenic mice overexpressing bovine GH. J Endocrinol 194(3):521-7 |
abstractText | Heart hypertrophy is a common finding of acromegaly, a syndrome due to GH excess. Impairment of adenine nucleotide translocase-1 (ANT-1) gene, the main mitochondrial ADP/ATP exchanger, leads to cardiac hypertrophy. The aim of the study was to evaluate cardiac expression and the functional role of ANT-1 in 1- to 12-month-old transgenic mice overexpressing bovine GH (acromegalic mice, Acro) and littermate controls (wild-type mice, Wt). GH specificity of protein degree variation was assessed treating Acro with pegvisomant, a GH receptor competitor. Tissue levels of ANT-1, NF-kappaB, ATP, and lactic acid were evaluated by western blot, bioluminescence, and Fourier transform infrared spectroscopy respectively. The degree of ANT-1 expression was higher in 1-month-old Acro than in Wt (47+/-5% OD vs 33+/-4% OD, P<0 01). On the contrary, ANT-1 expression was lower in 3- to 12-month-old Acro than in Wt (P<0 03). Changes in ANT-1 expression were associated with consistent changes of cellular ATP content, increasing at 1 month (P<0 05) and reducing thereafter in Acro when compared with Wt (P<0 04). Treatment with pegvisomant abolished ANT-1 and ATP changes observed in 1- and 3-month-old Acro, thus supporting a GH-dependent mechanism. Reduced ATP generation in hypertrophied hearts of older Acro was associated with increased lactic acid levels suggesting that part of energy was due to glycolysis. Variations in ANT-1 expression were linked to GH through changes in NF-kappaB, the levels of which changed accordingly. In conclusion, 1-month-old acromegalic mice had increased ANT-1 expression and higher degree of ATP production. Long-standing disease was associated with a consistent reduction of ANT-1 and ATP tissue levels, which became GH-independent in older animals. This study demonstrated a direct effect of GH on key proteins involved in energy metabolism of acromegalic hearts. |