First Author | Tsai CC | Year | 2009 |
Journal | J Immunol | Volume | 183 |
Issue | 2 | Pages | 856-64 |
PubMed ID | 19542364 | Mgi Jnum | J:151510 |
Mgi Id | MGI:4353964 | Doi | 10.4049/jimmunol.0804033 |
Citation | Tsai CC, et al. (2009) Glycogen synthase kinase-3beta facilitates IFN-gamma-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. J Immunol 183(2):856-64 |
abstractText | Glycogen synthase kinase-3beta (GSK-3beta)-modulated IFN-gamma-induced inflammation has been reported; however, the mechanism that activates GSK-3beta and the effects of activation remain unclear. Inhibiting GSK-3beta decreased IFN-gamma-induced inflammation. IFN-gamma treatment rapidly activated GSK-3beta via neutral sphingomyelinase- and okadaic acid-sensitive phosphatase-regulated dephosphorylation at Ser(9), and proline-rich tyrosine kinase 2 (Pyk2)-regulated phosphorylation at Tyr(216). Pyk2 was activated through phosphatidylcholine-specific phospholipase C (PC-PLC)-, protein kinase C (PKC)-, and Src-regulated pathways. The activation of PC-PLC, Pyk2, and GSK-3beta was potentially regulated by IFN-gamma receptor 2-associated Jak2, but it was independent of IFN-gamma receptor 1. Furthermore, Jak2/PC-PLC/PKC/cytosolic phospholipase A(2) positively regulated neutral sphingomyelinase. Inhibiting GSK-3beta activated Src homology-2 domain-containing phosphatase 2 (SHP2), thereby preventing STAT1 activation in the late stage of IFN-gamma stimulation. All these results showed that activated GSK-3beta synergistically affected IFN-gamma-induced STAT1 activation by inhibiting SHP2. |