|  Help  |  About  |  Contact Us

Publication : Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice.

First Author  Lee JW Year  2009
Journal  J Nutr Volume  139
Issue  10 Pages  1987-93
PubMed ID  19656855 Mgi Jnum  J:152904
Mgi Id  MGI:4360409 Doi  10.3945/jn.109.109785
Citation  Lee JW, et al. (2009) Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 139(10):1987-93
abstractText  Alzheimer's disease (AD) is characterized by the extracellular deposition of beta-amyloid peptide (Abeta) in cerebral plaques. Abeta is derived from the beta-amyloid precursor protein (APP) by the enzymes alpha-, beta- and gamma-secretase. Compounds that enhance alpha-secretase, but inhibit beta- or gamma-secretase activity, have therapeutic potential in the treatment of AD. Green tea, or its major polyphenolic compound, has been shown to have neuroprotective effects. In this study, we investigated the possible effects of (-)-epigallocatechin-3-gallate (EGCG) on memory dysfunction caused by Abeta through the change of Abeta-induced secretase activities. Mice were pretreated with EGCG (1.5 or 3 mg/kg body weight in drinking water) for 3 wk before intracerebroventricular administration of 0.5 microg Abeta(1-42). EGCG dose-dependently reduced the Abeta(1-42)-induced memory dysfunction, which was evaluated using passive avoidance and water maze tests. Abeta(1-42) induced a decrease in brain alpha-secretase and increases in both brain beta- and gamma-secretase activities, which were reduced by EGCG. In the cortex and the hippocampus, expression of the metabolic products of the beta- and gamma-secretases from APP, C99, and Abeta also were dose-dependently suppressed by EGCG. Paralleled with the suppression of beta- and gamma-secretases by EGCG, we found that EGCG inhibited the activation of extracellular signal-regulated kinase and nuclear transcription factor-kappaB in the Abeta(1-42)-injected mouse brains. In addition, EGCG inhibited Abeta(1-42)-induced apoptotic neuronal cell death in the brain. To further test the ability of EGCG to affect memory, EGCG (3 mg/kg body weight) was administered in drinking water for 1 wk to genetically developed preseniline 2 (PS2) mutant AD mice. Compared with untreated mutant PS2 AD mice, treatment with EGCG enhanced memory function and brain alpha-secretase activity but reduced brain beta- and gamma-secretase activities as well as Abeta levels. Moreover, EGCG inhibited the fibrillization of Abeta in vitro with a half maximal inhibitory concentration of 7.5 mg/L. These studies suggest that EGCG may be a beneficial agent in the prevention of development or progression of AD.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression