First Author | Zattra E | Year | 2009 |
Journal | Am J Pathol | Volume | 175 |
Issue | 5 | Pages | 1952-61 |
PubMed ID | 19808641 | Mgi Jnum | J:154708 |
Mgi Id | MGI:4397759 | Doi | 10.2353/ajpath.2009.090351 |
Citation | Zattra E, et al. (2009) Polypodium leucotomos Extract Decreases UV-Induced Cox-2 Expression and Inflammation, Enhances DNA Repair, and Decreases Mutagenesis in Hairless Mice. Am J Pathol 175(5):1952-61 |
abstractText | UV-irradiated skin and UV-induced tumors overexpress the inducible isoform of cyclooxygenase-2 (Cox-2), and Cox-2 inhibition reduces photocarcinogenesis. To evaluate photoprotective effects of Polypodium leucotomos extract (PL), hairless Xpc(+/-) mice were fed for 10 days with PL (300 mg/kg) or vehicle then UV-irradiated, once. By 24 hours, UV-induced Cox-2 levels were increased in vehicle-fed and PL-fed mice, whereas by 48 and 72 hours, Cox-2 levels were four- to fivefold lower in PL-fed mice (P < 0.05). p53 expression/activity was increased in PL-fed versus vehicle-fed then UV-irradiated mice. UV-induced inflammation was decreased in PL-fed mice, as shown by approximately 60% decrease (P < 0.001) in neutrophil infiltration at 24 hours, and macrophages by approximately 50% (<0.02) at 24 and 48 hours. By 72 hours, 54 +/- 5% cyclobutane pyrimidine dimers remained in vehicle-fed versus 31 +/- 5% in PL-fed skin (P < 0.003). The number of 8-hydroxy-2'-deoxyguanosine-positive cells were decreased before UV irradiation by approximately 36% (P < 0.01), suggesting that PL reduces constitutive oxidative DNA damage. By 6 and 24 hours, the number of 8-hydroxy-2'-deoxyguanosine-positive cells were approximately 59% (P < 0.01) and approximately 79% (P < 0.03) lower in PL-fed versus vehicle-fed mice. Finally, UV-induced mutations in PL-fed-mice were decreased by approximately 25% when assessed 2 weeks after the single UV exposure. These data demonstrate that PL extract supplementation affords the following photoprotective effects: p53 activation and reduction of acute inflammation via Cox-2 enzyme inhibition, increased cyclobutane pyrimidine dimer removal, and reduction of oxidative DNA damage. |