|  Help  |  About  |  Contact Us

Publication : Selective activation of protein kinase C-delta and -epsilon by 6,11,12,14-tetrahydroxy-abieta-5,8,11,13-tetraene-7-one (coleon U).

First Author  Coutinho I Year  2009
Journal  Biochem Pharmacol Volume  78
Issue  5 Pages  449-59
PubMed ID  19413996 Mgi Jnum  J:154804
Mgi Id  MGI:4398992 Doi  10.1016/j.bcp.2009.04.026
Citation  Coutinho I, et al. (2009) Selective activation of protein kinase C-delta and -epsilon by 6,11,12,14-tetrahydroxy-abieta-5,8,11,13-tetraene-7-one (coleon U). Biochem Pharmacol 78(5):449-59
abstractText  6,11,12,14-tetrahydroxy-abieta-5,8,11,13-tetraene-7-one (coleon U) is a diterpene compound isolated from Plectranthus grandidentatus with an antiproliferative effect on several human cancer cell lines. Herein, we studied the modulatory activity of coleon U on individual isoforms of the three protein kinase C (PKC) subfamilies, classical (cPKC-alpha and -betaI), novel (nPKC-delta and -epsilon) and atypical (aPKC-zeta), using a yeast PKC assay. The results showed that, whereas the PKC activator phorbol-12-myristate-13-acetate (PMA) activated every PKC tested except aPKC, coleon U had no effect on aPKC and cPKCs. Besides, the effect of coleon U on nPKCs was higher than that of PMA. This revealed that coleon U was a potent and selective activator of nPKCs. The isoform-selectivity of coleon U for nPKC-delta and -epsilon was confirmed using an in vitro PKC assay. Most importantly, while PMA activated nPKCs inducing an isoform translocation from the cytosol to the plasma membrane and a G2/M cell cycle arrest, coleon U induced nPKCs translocation to the nucleus and a metacaspase- and mitochondrial-dependent apoptosis. This work therefore reconstitutes in yeast distinct subcellular translocations of a PKC isoform and the subsequent distinct cellular responses reported for mammalian cells. Together, our study identifies a new isoform-selective PKC activator with promising pharmacological applications. Indeed, since coleon U has no effect on cPKCs and aPKC, recognised as anti-apoptotic proteins, and selectively induces an apoptotic pathway dependent on nPKC-delta and -epsilon activation, it represents a promising compound for evaluation as an anti-cancer drug.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression