First Author | Wang CY | Year | 2009 |
Journal | Mol Biol Cell | Volume | 20 |
Issue | 19 | Pages | 4153-61 |
PubMed ID | 19656851 | Mgi Jnum | J:164483 |
Mgi Id | MGI:4833942 | Doi | 10.1091/mbc.E09-02-0174 |
Citation | Wang CY, et al. (2009) Glycogen synthase kinase-3 and Omi/HtrA2 induce annexin A2 cleavage followed by cell cycle inhibition and apoptosis. Mol Biol Cell 20(19):4153-61 |
abstractText | Annexin A2 is involved in multiple cellular processes, including cell survival, growth, division, and differentiation. A lack of annexin A2 makes cells more sensitive to apoptotic stimuli. Here, we demonstrate a potential mechanism for apoptotic stimuli-induced annexin A2 cleavage, which contributes to cell cycle inhibition and apoptosis. Annexin A2 was persistently expressed around the proliferative but not the necrotic region in BALB/c nude mice with human lung epithelial carcinoma cell A549-derived tumors. Knockdown expression of annexin A2 made cells susceptible to either serum withdrawal-induced cell cycle inhibition or cisplatin-induced apoptosis. Under apoptotic stimuli, annexin A2 was time-dependently cleaved. Mechanistic studies have shown that protein phosphatase 2A (PP2A)-activated glycogen synthase kinase (GSK)-3 is essential for this process. Therefore, inhibiting GSK-3 reversed serum withdrawal-induced cell cycle inhibition and cisplatin-induced apoptosis. Furthermore, inhibiting serine proteases blocked apoptotic stimuli-induced annexin A2 cleavage. Bax activation and Mcl-1 destabilization, which is regulated by PP2A and GSK-3, caused annexin A2 cleavage via an Omi/HtrA2-dependent pathway. Taking these results together, we conclude that GSK-3 and Omi/HtrA2 synergistically cause annexin A2 cleavage and then cell cycle inhibition or apoptosis. |