|  Help  |  About  |  Contact Us

Publication : Disparate cellular basis of improved liver repair in beta-catenin-overexpressing mice after long-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine.

First Author  Thompson MD Year  2010
Journal  Am J Pathol Volume  177
Issue  4 Pages  1812-22
PubMed ID  20813968 Mgi Jnum  J:165435
Mgi Id  MGI:4837301 Doi  10.2353/ajpath.2010.100173
Citation  Thompson MD, et al. (2010) Disparate cellular basis of improved liver repair in beta-catenin-overexpressing mice after long-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Am J Pathol 177(4):1812-22
abstractText  Administration of a hepatotoxic diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) induces biliary damage followed by hepatocyte injury, which is repaired through atypical ductular proliferation and oval cells and their subsequent differentiation to bile duct cells and hepatocytes. In this study, we examine whether excess beta-catenin in transgenic (TG) mice would provide any reparative advantage in response to DDC. No differences in appearance or numbers of total A6-positive oval cells were observed after DDC administration. However, an increase in A6-positive 'atypical hepatocytes' in the TG livers was observed after 14 and 28 days, coinciding with an increase in proliferating cell nuclear antigen-positive hepatocytes. Intriguingly, after chronic DDC administration for 150 days, a further increase in atypical hepatocytes was evident in TG mice, with higher numbers of proliferating cell nuclear antigen-positive hepatocytes exhibiting cytoplasmic/nuclear beta-catenin and alpha-fetoprotein but not CK19, HNF1beta, or Trop-2. Coincidently, we observed an improvement in intrahepatic cholestasis as seen by decreases in both serum bilirubin and alkaline phosphatase levels in TG mice, indicating an overall improvement in hepatic repair. TG mice exposed to DDC for 4 weeks followed by 2 days of normal chow showed decreases in alkaline phosphatase, atypical ductular proliferation, and periportal inflammation compared with wild-type animals, verifying improved biliary repair in TG livers. Thus, we report a potential role of beta-catenin in liver repair, especially in enhancing the resolution of intrahepatic cholestasis after DDC injury.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression