|  Help  |  About  |  Contact Us

Publication : Protein quaternary structure and expression levels contribute to peroxisomal-targeting-sequence-1-mediated peroxisomal import of human soluble epoxide hydrolase.

First Author  Luo B Year  2008
Journal  J Mol Biol Volume  380
Issue  1 Pages  31-41
PubMed ID  18513744 Mgi Jnum  J:168883
Mgi Id  MGI:4939128 Doi  10.1016/j.jmb.2008.04.064
Citation  Luo B, et al. (2008) Protein quaternary structure and expression levels contribute to peroxisomal-targeting-sequence-1-mediated peroxisomal import of human soluble epoxide hydrolase. J Mol Biol 380(1):31-41
abstractText  The peroxisomal targeting sequence 1 (PTS1) is a consensus tripeptide 1 (S/C/A)(K/R/H)(L/M) that is found at the C-terminus of most peroxisomal proteins. However, the only known mammalian protein containing a terminal methionine PTS1 (SKM), human soluble epoxide hydrolase (hsEH), shows both peroxisomal and cytosolic localizations in vivo. Mechanisms regulating the subcellular localization of hsEH thus remain unclear. Here we utilized green fluorescent protein-hsEH fusion constructs to study the peroxisomal targeting of hsEH in transiently and stably transfected Chinese hamster ovary cells. Our results suggest that the peroxisomal import of hsEH is regulated by three factors. First, we show that SKM is required, but not sufficient, for peroxisomal import. Second, by manipulating protein expression levels, we show that SKM mediates peroxisomal import of wild-type hsEH only when expression levels are high. Third, we show that amino acid modifications that decrease subunit oligomerization and presumably enhance accessibility of the SKM motif confer peroxisomal targeting even at low protein expression levels. We conclude that, in hsEH, SKM is a necessary but inefficient and context-dependent PTS1. Peroxisomal import occurs when expression levels are high or when the SKM motif is accessible. These results provide a mechanistic basis for understanding the cell-specific and tissue-specific localization of hsEH in vivo.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression