|  Help  |  About  |  Contact Us

Publication : Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy.

First Author  Cao DJ Year  2011
Journal  Proc Natl Acad Sci U S A Volume  108
Issue  10 Pages  4123-8
PubMed ID  21367693 Mgi Jnum  J:170678
Mgi Id  MGI:4947140 Doi  10.1073/pnas.1015081108
Citation  Cao DJ, et al. (2011) Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A 108(10):4123-8
abstractText  Histone deacetylases (HDACs) regulate cardiac plasticity; however, their molecular targets are unknown. As autophagy contributes to pathological cardiac remodeling, we hypothesized that HDAC inhibitors target autophagy. The prototypical HDAC inhibitor (HDACi), trichostatin A (TSA), attenuated both load- and agonist-induced hypertrophic growth and abolished the associated activation of autophagy. Phenylephrine (PE)-triggered hypertrophy and autophagy in cultured cardiomyocytes were each blocked by a panel of structurally distinct HDAC inhibitors. RNAi-mediated knockdown of either Atg5 or Beclin 1, two essential autophagy effectors, was similarly capable of suppressing ligand-induced autophagy and myocyte growth. RNAi experiments uncovered the class I isoforms HDAC1 and HDAC2 as required for the autophagic response. To test the functional requirement of autophagic activation, we studied mice that overexpress Beclin 1 in cardiomyocytes. In these animals with a fourfold amplified autophagic response to TAC, TSA abolished TAC-induced increases in autophagy and blunted load-induced hypertrophy. Finally, we subjected animals with preexisting hypertrophy to HDACi, finding that ventricular mass reverted to near-normal levels and ventricular function normalized completely. Together, these data implicate autophagy as an obligatory element in pathological cardiac remodeling and point to HDAC1/2 as required effectors. Also, these data reveal autophagy as a previously unknown target of HDAC inhibitor therapy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression