First Author | Julve J | Year | 2010 |
Journal | Arterioscler Thromb Vasc Biol | Volume | 30 |
Issue | 2 | Pages | 232-8 |
PubMed ID | 19910634 | Mgi Jnum | J:171797 |
Mgi Id | MGI:4999713 | Doi | 10.1161/ATVBAHA.109.198226 |
Citation | Julve J, et al. (2010) Human apolipoprotein A-II determines plasma triglycerides by regulating lipoprotein lipase activity and high-density lipoprotein proteome. Arterioscler Thromb Vasc Biol 30(2):232-8 |
abstractText | INTRODUCTION: Apolipoprotein (apo) A-II is the second most abundant high-density lipoprotein (HDL) apolipoprotein. We assessed the mechanism involved in the altered postprandial triglyceride-rich lipoprotein metabolism of female human apoA-II-transgenic mice (hapoA-II-Tg mice), which results in up to an 11-fold increase in plasma triglyceride concentration. The relationships between apoA-II, HDL composition, and lipoprotein lipase (LPL) activity were also analyzed in a group of normolipidemic women. METHODS AND RESULTS: Triglyceride-rich lipoprotein catabolism was decreased in hapoA-II-Tg mice compared to control mice. This suggests that hapoA-II, which was mainly associated with HDL during fasting and postprandially, impairs triglyceride-rich lipoprotein lipolysis. HDL isolated from hapoA-II-Tg mice impaired bovine LPL activity. Two-dimensional gel electrophoresis, mass spectrometry, and immunonephelometry identified a marked deficiency in the HDL content of apoA-I, apoC-III, and apoE in these mice. In normolipidemic women, apoA-II concentration was directly correlated with plasma triglyceride and inversely correlated with the HDL-apoC-II+apoE/apoC-III ratio [corrected]. HDL-mediated induction of LPL activity was inversely correlated with apoA-II and directly correlated with the HDL-apoC-II+apoE/apoC-III ratio [corrected]. Purified hapoA-II displaced apoC-II, apoC-III, and apoE from human HDL2. Human HDL3 was, compared to HDL2, enriched in apoA-II but poorer in apoC-II, apoC-III, and apoE. CONCLUSIONS: ApoA-II plays a crucial role in triglyceride catabolism by regulating LPL activity, at least in part, through HDL proteome modulation. |