|  Help  |  About  |  Contact Us

Publication : Nicotinamide mononucleotide adenylyl transferase 1 protects against acute neurodegeneration in developing CNS by inhibiting excitotoxic-necrotic cell death.

First Author  Verghese PB Year  2011
Journal  Proc Natl Acad Sci U S A Volume  108
Issue  47 Pages  19054-9
PubMed ID  22058226 Mgi Jnum  J:180183
Mgi Id  MGI:5305560 Doi  10.1073/pnas.1107325108
Citation  Verghese PB, et al. (2011) Nicotinamide mononucleotide adenylyl transferase 1 protects against acute neurodegeneration in developing CNS by inhibiting excitotoxic-necrotic cell death. Proc Natl Acad Sci U S A 108(47):19054-9
abstractText  Hypoxic-ischemic (H-I) injury to the developing brain is a significant cause of morbidity and mortality in humans. Other than hypothermia, there is no effective treatment to prevent or lessen the consequences of neonatal H-I. Increased expression of the NAD synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1) has been shown to be neuroprotective against axonal injury in the peripheral nervous system. To investigate the neuroprotective role of Nmnat1 against acute neurodegeneration in the developing CNS, we exposed wild-type mice and mice overexpressing Nmnat1 in the cytoplasm (cytNmnat1-Tg mice) to a well-characterized model of neonatal H-I brain injury. As early as 6 h after H-I, cytNmnat1-Tg mice had strikingly less injury detected by MRI. CytNmnat1-Tg mice had markedly less injury in hippocampus, cortex, and striatum than wild-type mice as assessed by loss of tissue volume 7 d days after H-I. The dramatic protection mediated by cytNmnat1 is not mediated through modulating caspase3-dependent cell death in cytNmnat1-Tg brains. CytNmnat1 protected neuronal cell bodies and processes against NMDA-induced excitotoxicity, whereas caspase inhibition or B-cell lymphoma-extra large (Bcl-XL) protein overexpression had no protective effects in cultured cortical neurons. These results suggest that cytNmnat1 protects against neonatal HI-induced CNS injury by inhibiting excitotoxicity-induced, caspase-independent injury to neuronal processes and cell bodies. As such, the Nmnat1 protective pathway could be a useful therapeutic target for acute and chronic neurodegenerative insults mediated by excitotoxicity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression