|  Help  |  About  |  Contact Us

Publication : Loss of discoidin domain receptor 2 promotes hepatic fibrosis after chronic carbon tetrachloride through altered paracrine interactions between hepatic stellate cells and liver-associated macrophages.

First Author  Olaso E Year  2011
Journal  Am J Pathol Volume  179
Issue  6 Pages  2894-904
PubMed ID  22019896 Mgi Jnum  J:180270
Mgi Id  MGI:5305921 Doi  10.1016/j.ajpath.2011.09.002
Citation  Olaso E, et al. (2011) Loss of discoidin domain receptor 2 promotes hepatic fibrosis after chronic carbon tetrachloride through altered paracrine interactions between hepatic stellate cells and liver-associated macrophages. Am J Pathol 179(6):2894-904
abstractText  Hepatic stellate cells (HSCs) interact with fibrillar collagen through the discoidin domain receptor 2 (DDR2) in acute hepatic injury, generating increased fibrosis. However, the contribution of DDR2 signaling to chronic liver fibrosis in vivo is unclear, despite its relevance to chronic human liver disease. We administered carbon tetrachloride (CCl(4)) to DDR2(+/+) and DDR2(-/-) mice twice weekly, and liver tissues and isolated HSCs were analyzed. In contrast to changes seen in acute injury, after chronic CCl(4) administration, DDR2(-/-) livers had increased collagen deposition, gelatinolytic activity, and HSC density. Increased basal gene expression of osteopontin, transforming growth factor-beta1, monocyte chemoattractant protein-1, and IL-10 and reduced basal gene expression of matrix metalloproteinase-2, matrix metalloproteinase-13, and collagen type I in quiescent DDR2(-/-) HSCs were amplified further after chronic CCl(4). In concordance, DDR2(-/-) HSCs isolated from chronically injured livers had enhanced in vitro migration and proliferation, but less extracellular matrix degradative activity. Macrophages from chronic CCl(4)-treated DDR2(-/-) livers showed stronger chemoattractive activity toward DDR2(-/-) HSCs than DDR2(+/+) macrophages, increased extracellular matrix degradation, and higher cytokine mRNA expression. In conclusion, loss of DDR2 promotes chronic liver fibrosis after CCl(4) injury. The fibrogenic sinusoidal milieu generated in chronic DDR2(-/-) livers recruits more HSCs to injured regions, which enhances fibrosis. Together, these findings suggest that DDR2 normally orchestrates gene programs and paracrine interactions between HSCs and macrophages that together attenuate chronic hepatic fibrosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression