First Author | Jendrysik MA | Year | 2011 |
Journal | PLoS One | Volume | 6 |
Issue | 12 | Pages | e28198 |
PubMed ID | 22145029 | Mgi Jnum | J:182273 |
Mgi Id | MGI:5315084 | Doi | 10.1371/journal.pone.0028198 |
Citation | Jendrysik MA, et al. (2011) NADPH oxidase-2 derived ROS dictates murine DC cytokine-mediated cell fate decisions during CD4 T helper-cell commitment. PLoS One 6(12):e28198 |
abstractText | NADPH oxidase-2 (Nox2)/gp91(phox) and p47(phox) deficient mice are prone to hyper-inflammatory responses suggesting a paradoxical role for Nox2-derived reactive oxygen species (ROS) as anti-inflammatory mediators. The molecular basis for this mode of control remains unclear. Here we demonstrate that IFNgamma/LPS matured p47(phox-/-)-ROS deficient mouse dendritic cells (DC) secrete more IL-12p70 than similarly treated wild type DC, and in an in vitro co-culture model IFNgamma/LPS matured p47(phox-/-) DC bias more ovalbumin-specific CD4(+) T lymphocytes toward a Th1 phenotype than wild type (WT) DC through a ROS-dependent mechanism linking IL-12p70 expression to regulation of p38-MAPK activation. The Nox2-dependent ROS production in DC negatively regulates proinflammatory IL-12 expression in DC by constraining p38-MAPK activity. Increasing endogenous H(2)O(2) attenuates p38-MAPK activity in IFNgamma/LPS stimulated WT and p47(phox-/-) DC, which suggests that endogenous Nox 2-derived ROS functions as a secondary messenger in the activated p38-MAPK signaling pathway during IL-12 expression. These findings indicate that ROS, generated endogenously by innate and adaptive immune cells, can function as important secondary messengers that can regulate cytokine production and immune cell cross-talk to control during the inflammatory response. |