|  Help  |  About  |  Contact Us

Publication : BIM(EL), an intrinsically disordered protein, is degraded by 20S proteasomes in the absence of poly-ubiquitylation.

First Author  Wiggins CM Year  2011
Journal  J Cell Sci Volume  124
Issue  Pt 6 Pages  969-77
PubMed ID  21378313 Mgi Jnum  J:182979
Mgi Id  MGI:5317259 Doi  10.1242/jcs.058438
Citation  Wiggins CM, et al. (2011) BIM(EL), an intrinsically disordered protein, is degraded by 20S proteasomes in the absence of poly-ubiquitylation. J Cell Sci 124(Pt 6):969-77
abstractText  BIM-extra long (BIM(EL)), a pro-apoptotic BH3-only protein and part of the BCL-2 family, is degraded by the proteasome following activation of the ERK1/2 signalling pathway. Although studies have demonstrated poly-ubiquitylation of BIM(EL) in cells, the nature of the ubiquitin chain linkage has not been defined. Using ubiquitin-binding domains (UBDs) specific for defined ubiquitin chain linkages, we show that BIM(EL) undergoes K48-linked poly-ubiquitylation at either of two lysine residues. Surprisingly, BIM(EL)DeltaKK, which lacks both lysine residues, was not poly-ubiquitylated but still underwent ERK1/2-driven, proteasome-dependent turnover. BIM has been proposed to be an intrinsically disordered protein (IDP) and some IDPs can be degraded by uncapped 20S proteasomes in the absence of poly-ubiquitylation. We show that BIM(EL) is degraded by isolated 20S proteasomes but that this is prevented when BIM(EL) is bound to its pro-survival target protein MCL-1. Furthermore, knockdown of the proteasome cap component Rpn2 does not prevent BIM(EL) turnover in cells, and inhibition of the E3 ubiquitin ligase beta-TrCP, which catalyses poly-Ub of BIM(EL), causes Cdc25A accumulation but does not inhibit BIM(EL) turnover. These results provide new insights into the regulation of BIM(EL) by defining a novel ubiquitin-independent pathway for the proteasome-dependent destruction of this highly toxic protein.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression