First Author | Barandon L | Year | 2011 |
Journal | Arterioscler Thromb Vasc Biol | Volume | 31 |
Issue | 11 | Pages | e80-7 |
PubMed ID | 21836067 | Mgi Jnum | J:191837 |
Mgi Id | MGI:5463181 | Doi | 10.1161/ATVBAHA.111.232280 |
Citation | Barandon L, et al. (2011) Secreted frizzled-related protein-1 improves postinfarction scar formation through a modulation of inflammatory response. Arterioscler Thromb Vasc Biol 31(11):e80-7 |
abstractText | OBJECTIVE: The inflammatory response after myocardial infarction plays a crucial role in the healing process. Lately, there is accumulating evidence that the Wnt/Frizzled pathway may play a distinct role in inflammation. We have shown that secreted frizzled-related protein-1 (sFRP-1) overexpression reduced postinfarction scar size, and we noticed a decrease in neutrophil infiltration in the ischemic tissue. We aimed to further elucidate the role of sFRP-1 in the postischemic inflammatory process. METHODS AND RESULTS: We found that in vitro, sFRP-1 was able to block leukocyte activation and cytokine production. We transplanted bone marrow cells (BMCs) from transgenic mice overexpressing sFRP-1 into wild-type recipient mice and compared myocardial healing with that of mice transplanted with wild-type BMCs. These results were compared with those obtained in transgenic mice overexpressing sFRP-1 specifically in endothelial cells or in cardiomyocytes to better understand the spatiotemporal mechanism of the sFRP-1 effect. Our findings indicate that when overexpressed in the BMCs, but not in endothelial cells or cardiomyocytes, sFRP-1 was able to reduce neutrophil infiltration after ischemia, by switching the balance of pro- and antiinflammatory cytokine expression, leading to a reduction in scar formation and better cardiac hemodynamic parameters. CONCLUSION: sFRP-1 impaired the loop of cytokine amplification and decreased neutrophil activation and recruitment into the scar, without altering the neutrophil properties. These data support the notion that sFRP-1 may be a novel antiinflammatory factor protecting the heart from damage after myocardial infarction. |